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Abstract—In this paper, the thermo-fluid-dynamic field resulting from the coupling of laminar forced

convection along and conduction inside a heated flat plate is studied by means of two expansions. The first

one, describing the field in the leading edge region of the flat plate, is a regular series. The second expansion,

which is asymptotic, includes eigensolutions. Moreover, by means of the Padé approximant technique, it

is possible to extend the validity of the first expansion over its range of convergence and hence to obtain
the description of the entire field.

1. INTRODUCTION

THE REFERENCE work for the conjugated problem of
laminar forced convection along a flat plate is due to
Luikov et al. [1]. In that paper, the coupled con-
duction problem in a flat plate of finite thickness b
and the convection problem for the fluid were con-
sidered. The authors solved the problem by means of
the generalized Fourier sine transformation and an
expansion in series in terms of the Fourier variable.
The results of such an analysis were presented in two
figures for two examples. This solution cannot be
easily used ; and Luikov [2] has given an approximate
solution of the problem assuming a linear temperature
distribution in the plate.

An extension of these results was obtained by
Payvar 3] for high Prandti numbers. An improvement
of the Payvar analysis was studied by Karvinen [4],
who also presented in ref. [5] an iterative technique
for solving the conjugated heat transfer problem in a
flat plate in the presence of internal heat sources.
Gosse [6] presented an analytic solution which held
at high values of the abscissa x. A review of conjugated
problems for geometries different from the flat plate
was presented by Gori {7].

The purpose of this paper is to describe the entire
thermo-fluid-dynamic field by means of two expan-
sions in terms of the coupling parameter : the first one
is an initial solution, which holds when the abscissa
falls in the range 0-L,, and the second one is an
asymptotic solution which holds when the abscissa is
greater than L . The two lengths L;, and L,, depend
on the coupling parameter and the Prandtl number.

By means of the Padé approximant technique, it is
possible to match very well these two expansions and
to obtain an accurate description of the field.

2. EQUATIONS AND BOUNDARY
CONDITIONS

In order to describe the steady two-dimensional
forced flow on one side of a flat plate of thickness 5,

insulated on the edge, and with a temperature T}
maintained on the other side (Fig. 1), one must solve
the coupled thermal fields in the solid and in the fluid.
The coupling conditions require that the temperature
and the heat flux be continuous at the interface.

Neglecting the wall axial conduction, the tem-
perature T,,(x, y) in the solid is given by

so(x9 y) _(Tb w).VIb (1)

where T, = T(x, 0) is the (unknown) temperature at
the interface.

The thermo-fluid-dynamic field in the fluid is
governed by the boundary layer equations, which in
non-dimensional form for a compressible flow may
be written as

{pw).+{pv), =0 {2a)
pluu,+ou,) = (uu,), (2b)

1
plute+ut) = 5 (A6), + (=DM s} (20)

where Prand M are respectively the Prandtl and Mach
numbers of the external flow, and 1 = 7/T,.

We take as reference lengths the wall thicknesses b
y T
Yo rw X
L '
L '»
r 1
)
7. =const.

b

FiG. 1. Thermal model of a flat plate.
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NOMENCLATURE
a Pr(y—1DMYAL, u fluid axial velocity
4., B, coeflicients of Padé summation, v fluid normal velocity
equation (17) Av v~V
b plate thickness V pr+un,
C constant of the first eigensolution ¥ ; dimensionless axial coordinate
h; coefficients of the expansion in ¥ dimensionless normal coordinate
MacLaurin series of §, equation (14) z BiEY?
L., value of the abscissa where the z Blasius solution.
asymptotic solution begins
L, length of the region in which the initial
solution is valid Greek symbols
M Mach number B first eigenvalue of equation (19)
m piEY? ¥ ratio of specific heats
wy 1/m S dimensionless temperature,
mi  upper bound of the range of validity of (T—T ) (Ty—T.)
the initial solution % coefficients of the asymptotic expansion
#,  lower bound of the range of validity of of 9, equation (13)
the asymptotic solution n fspdy
W value of m where the initial condition for e function defined in equation (22)
the asymptotic solution is given A, A, fuid and solid thermal conductivities
Nu, local Nusselt number, u fluid viscosity
—xT, o/ [Tw(x) — T] v kinematic viscosity of the fluid
p coupling parameter, A, Re'/?/4, & x
Pr  Prandtl number I density of fluid
Re Reynolds number, u_b/v,. ¥ eigensolution of equation (23).
Re,  Reynolds number, ux/v,
t dimensionless temperature, 777,
At, (To—T) T, Subscripts
T temperature w wall-fluid interface
T, temperature at the outside surface of the o0 mainstream flow.
plate

and bRe "? along the x- and y-directions, respec-
tively, where Re = u,,b/v.

The heat flux continuity condition may be written
as

i Re''? ty(x5 0) = '}"s[tw_tb] (3)

where the thermal conductivities depend in general on
the temperature.

The boundary conditions which, together with
equation (3), must be associated with the system of
equations (2a)—(2c) are

u(x,0) = v(x,0) =0; wu(x.0)=1 @)

#0, 3) = t(x, 00) = 1. (5

By assuming that u and A vary linearly with temper-
ature and that ¢, is a constant, the boundary layer
equations reduce to the incompressible form by apply-
ing the Stewartson—Dorodnitzin transformation. In

this way, equations (2a) and (2b) are independent of
equation (2¢) and their solution is

u=2; V=2 -2Z)2" 6)

where Z(z) is the Blasius solution and

hd

E=x, z=n/t"?, n=dey,

0

V= pvtun,. (6)

In t £ tho variahlac F and »
i Wrms o il vananis ¢ and , {he energy egu

tion {(2¢) may be written as
Pr(ud:+V39,) =9, +au; (N
where 3 = (T'— Tco)/(Tb— Tw)a Atoc = (Tb_ Too)/Toc
and a = Pr(y—1)M?*/Az,, and u and V are given by
equations {6).
The coupling condition (3) assumes the form
pIE,0) =8, —1 ®)

where 9, = 3(&, 0), the coupling parameter p =
A, Re'?/A,, and the thermal boundary conditions (5)
become

30, =0
3, 00) =0.

(%a)
(ob)

3. SOLUTION METHOD

In terms of the variables ¢ and z, equations (7) and
(8) may be written as
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(2¢2°9,—Z9,) Pr=123,,4+2aZ"* (10)
m3,(¢,0) = 3, —1 (1

where
m = p/¢2. (12)

The variable m defined by equation (12) is related to
the local Brun number [2] for a flat plate in the follow-
ingway: Br,=mPr"(n=1/2if Pr <0.5andn = 1/3
if Pr 2 0.5). Physically, the local Brun number is pro-
portional to the ratio of the thermal resistances of the
wall and boundary layer over the length x.

The boundary condition (11) suggests a change in
variables from ¢ and z to m and z. If one expands the
function & in a MacLaurin series with respect to m
(m — 0 corresponds to x - c0), thus writing

one finds that this form of the solution is not satis-
factory everywhere because m diverges for vanishing
¢. Hence this expansion does not hold at ¢ = 0, and
the initial condition (9a) cannot be satisfied.

Moreover, the linearized problem presents eigen-
values ; this circumstance, although it does not permit
us to utilize an expansion in terms of m of the form
of equation (13), does enable us to solve the problem
of the initial conditions. It is necessary to modify
this form and to give the boundary condition at
m (m = p/EL?, where £, is a suitable positive value of
&) according to boundary condition (9a).

To obtain this new initial condition, a different
expansion (initial expansion) valid for small vaiues of
¢ will be considered. The function 3 is now expanded
in a MacLaurin series with respect to m; = 1/m, thus
writing

K
9 = Z n hy(2). (14)
i=0

In this way, if one assumes that A,(c0) = 0, initial
condition (9a) is satisfied as well. Moreover, if i1 is a
point of convergence of expansion (14), it is possible
to obtain in this point the initial condition for a correct
expansion in terms of m (asymptotic expansion).

4. EXPANSION FOR SMALL ¢
(INITIAL EXPANSION)

By substituting expansion (14) into equations (10)
and (11) one finds the following leading-order equa-
tion and boundary conditions :

4+ PrZKo/2+aZ"* =0
0(0) = 0;  hg(00) =0 (15)

and the following for the ith order:
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2h! —Pr(Z'ih,—Zh)) =0

B©)=h_,(0)—d,; h(0)=0 (16)

where §,, =l and §,;, =0 fori> 1.

Equations (15) and (16) represent a standard
boundary-value problem which can be easily solved
numerically. It is possible to use the results obtained
from series (14) for obtaining, by means of the Padé
approximant technique, a new and powerful expan-
sion.

The idea of the Padé summation is to replace a
power series X a," by a sequence of rational functions
of the form

N M
Py(n=Y A,,t"/ Y. Bt 17

n=0 n=0
where B, may be set equal to 1 without loss of gener-
ality. The remaining M + N + 1 coefficients 4,, B, may
be chosen so that the first M+ N+1 terms in the
Taylor series expansion of P} (f) match the first
M+ N+1 terms of the power series 22, a,". The
resulting rational function P%(f) is called a Padé
approximant and the special sequence for which
M = N is called the diagonal sequence.

In this way it is possible to obtain a rapid con-
vergence by using only a few terms of the original
Taylor series, but above all the utility of Padé approxi-
mants lies in the fact that they also work well when
the Taylor series does not converge.

The remarkable improvement with respect to the
MacLaurin expansion obtained with Padé approxi-
mants will be shown in the following sections.

The solution of the initial problem makes it possible
tn aive tha
to give the

haimdary cranditian at m — s far tha
CUuliualy LOLGIUON atl i =M 107 UGS

asymptotic expansion.

5. EXPANSION FOR ¢ HIGH
(ASYMPTOTIC EXPANSION)

The solution for m < ri assumes a form different
from that expressed by expansion (13).

In fact, if one substitutes this expansion into equa-
tions (10) and (11), one finds the following first-order
equation and boundary conditions :

296+ PrZ%,+2aZ"* =0

36(0) =1; Y4(0) =0 (18)

and the following for the ith order:
2%+ Pr(Z'i%+Z9;) =0 (19)
8:0) = 9,_1(0); 9:(e0) =0. (20

Equation (19) presents eigensolutions when associ-
ated with the boundary conditions $,(0) = 8,(c0) = 0.

The first one appears for 1 < f,=i<2, and
depends on Pr. For instance, 8, ~ 1.60 for Pr = 0.70
and f, =~ 1.51 for Pr = 7.02.

The first two terms in expansion (13) may then be
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determined by means of equations (18)—(20), and the
solution may be written in the form

9 = Z m 9.(z) +mP 1 R(m, z) 2n

=10
where the function R(m, z) is not analytic with respect
to m. R may be represented by a suitable expansion.
To estimate the leading term of such an expansion,
say ®,(z), we write equation (21) as follows:
1

9= m9,@)+m"®,(2)+om")

=0

(22)

where o(mf1) denotes terms of order smaller than
mhs,

We now put ©,(z) = C(m)y¥(z), where Y(2) is the
eigensolution of the equation

Y+ Pr{ZBW+2y’)=0 (23)

[¥(0) = y(o0) = 0] that satisfies the initial condition
Y’(0) = 1, whereas C(r) depends on the value of
m = m, where the initial condition for the asymptotic
solution is given.

In order to calculate C(#7), we consider the function

Fim) = L’L uddz.

C must be such that the values obtained for such a
function at m =m by means of the two repre-
sentations (14) and (22) of & are equal.

6. RESULTS AND DISCUSSION

The initial solution, holding for small values of
m; = x'*/p and described by equation (14), has been
found with 21 terms of the expansion, using a fourth-
order predictor—corrector method. In Table 1, the

Table 1. Coefficients 4,(0) of expansion (14) (initial solution)

Pr=207, Pr=10.7, Pr =102,

i M=0 M=3 M=0

0 0 5.8853303 0

1 2.4636984 —12.035983 1.1280761

2 —5.1291153 25.057417  —1.0799054

3 9.5413968 —46.612845 9.2572774E~1
4 —16.313412 79.696306  —7.3030601E-1

S 26.073775 —127.3783 5.3904464E-1
6 —39.399996 192.48139 ~-3.7639352E-1

7 56.744427 —277.21406 2.5060616E-1

8 —78.362526 382.82461 — 1.6004882E-1
9 104.25337 —509.30837 9.8498975E-2
10 —134.12117 655.22015 —5.8632192E-2
11 167.36393 —817.61883 3.3859516E-2
12 —203.09191 992.15765 —1.9017861E-2
13 240.17474 —1173.3142 1.0411339E-2
14 —277.31236 1354.7373 —5.5655834E-3
15 313.12236 —1529.6733 2.9098012E-3
16 —346.23453 1691.4286 —1.4899360E-3
17 375.38318 —1833.8199 7.4809335E4
18 —399.48843 1951.5720 —3.6872367E4
19 417.71981 —2040.6281 1.7857745E-4
20 —429.53754 2098.3516 —8.5057695E-5
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Fi1G. 2. The interface temperature represented by the initial

solution (~——) and by Padé summation (—.—) for

Pr=17.02 and M ~ 0 (lower curves), Pr=07 and M ~0
(middle curves), Pr = 0.7 and M = 3 (upper curves).

values of A(0), giving the interface temperature 9,
for Pr=10.7 (air), for M ~0 and M =3, and for
Pr =7.02 (water), for M ~ 0, have been listed.

By means of these coefficients it was possible to
determine the Padé approximants, given by equation
(17) with M = N, for several values of N. No signifi-
cant difference was noted between the results obtained
for N = 10 and those for N > 10.

In Fig. 2 the interface temperature 3, represented
by the initial solution (14) and the Padé approximants
(17) plotted against m; is drawn for Pr = 0.7 and
M ~0, for Pr=7.02 and M ~ 0 and for Pr = 0.7
and M =3 (* curves). This figure shows that for
m, < mi{ (where mf{ ~ 0.5 for Pr=0.7 and M ~ 0,
mi ~ 0.9 for Pr=7.02and M ~ 0 and m{ ~ 0.5 for
Pr=0.7 and M = 3), the two representations give
very similar results, while for m, > m?, the results are
completely different. If we denote by L, the length
of the strip in which the initial solution holds,
L., = (m{p)*b. We shall show later that, by com-
parison with the asymptotic values, the Padé curve
converges to the exact one.

Let us consider now the asymptotic solution (22)
represented in terms of the variable m = p/x"/?. The
values of 95(0) and 31(0) for Pr=07 (M~0
and M = 3) and for Pr = 7.02 (M ~ 0) are given in
Table 2.

These coefficients enable us to obtain the asymp-
totic solution, neglecting terms of order mfi; an
improvement in these results may be obtained by

Table 2. Coefficients $40) of asymptotic expansion (22)

Pr=0.7, Pr=07,M=3  Pr=702,
i M=~0 At = 0.2556 M=0
0 —0.292680 1.429840 —0.646542
1 0 0 0
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Table 3. Comparison of the Padé summation, the asymptotic
solution with two terms and the asymptotic solution with
three terms

Padé

m. summatinn
Hi SUIRINEUCH

Asymptotic solution

two tarme three terme
two erms three ierms

0.5 —0.2088 —0.2927 —0.1653
1.0 —0.2530 -0.2927 —0.2507
1.5 -0.2692 —0.2927 —0.2707
20 —0.2769 -0.2927 —-0.2788
3.0 —0.2839 —-0.2927 —0.2854
4.0 -~0.2870 —0.2927 —0.2881
6.0 —0.2897 —0.2927 —0.2903
8.0 —0.2909 —0.2927 -0.2912
10.0 —0.2915 —-0.2927 —0.2916

adding the first eigensolution, as estimated at the end
of Section 5.

Table 3 compares the values of 9,(m,, 0) obtained
by means of the Padé summation (17), the asymptotic
solution (22), neglecting terms of order m®1, and the
asymptotic solution, neglecting terms smaller than
mP (constant C has been evaluated at 7z = 0.33) for
Pr=0.7and M ~0.

In Fig. 3, the interface temperature 9,, represented
by the Padé summation and by the asymptotic sol-
ution with two terms is plotted against m, for Pr=0.7
and M ~ 0, for Pr = 7.02and M ~ O and for Pr = 0.7
and M = 3. Table 3 and Fig. 3 show that for m, > 8
the values given by the Padé representation practically
coincide with those given by the asymptotic solution.
Therefore, while the MacLaurin initial expansion
holds for 0 < m, < m{ the Padé representation holds
in the entire field.

Figure 4 compares the interface temperature 39,
obtained from the present solution (solid curves) with
that of ref. [1]. These solutions refer to different situ-
ations : the present one may be considered exact, start-
ing from assumption (1), while the Luikov solution,
obtained without assumption (1), is based on an

1.007 ——————————16.00
p /A -
By / / 8y (*)
0.50 / —3.50
-: 7
’ "
FE I I O I R
o 3 6 9 12 i %0
m
Fic. 3. The interface temperature in the asymptotic
(——~—) and Padé representation (——) (for Pr=0.7

and M =~ 0 (upper curves), Pr=7.02 and M ~ 0 (middle
curves), Pr = 0.7 and M =3 (lower curves).
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FiG. 4. Comparison between the present results (—) and
the Luikov [1] results (——~—).

expansion in series the accuracy of which is not dis-
cussed.

In Fig. 5, the influence of the Mach number on the
interface temperature and on the Nusselt number is
shown, subject to the hypothesis of no interference
between the shock wave and the boundary layer.

The local Nusselt number Nu, is defined as
Nu, = —=xT, o/[To(x)-T,]. In Fig. 6, the value of
Nu, obtained from the present solution (solid curves)
is compared, for several Prandtl numbers, with that
obtained from the first-order asymptotic solution of
ref. [6] (dashed curves), in which the expression pre-
sented for 0.6 < Pr < 15is

Nu,  0.332Pr'm,
Re}? ™ m,—0.332prV%"

This figure shows that for m, > 7,, the solution
of ref. [6] is accurate (for Pr=10.7, i, =4, for
Pr=2, m;=6; for Pr=17.02, m,=38), and for
m; = o0, the curves of Nu, tend to values which

Nuy U™

|,
Re2

T T 0 O T Y O T O 0 0 0 T O S
o 2 4 [ 8 10
m
F1G. 5. The influence on the interface temperature and on the
Nusselt number of M for Pr = 0.7 and Az, = 0.2556: ——,
M=3——M=2;—— M=134,
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F1G. 6. Comparison between the present results ( ), the
Gosse [6] results (————) and the approximate expression

(———

are well described by the approximate expression
Nu, = 0.332Rel/* Pr'/® holding in the isothermal case
(dashed lines). Thus the asymptotic solution is valid
for values of the abscissa greater than L,,, where
Ly, = (p)’h.

Padé’s approximant technique may also be used for
determining the temperature and velocity profiles.

In fact, if we put

M+N

N . M n
Y mih(z) =) Aim’l/z B,
i=0

i=0 i=0
then the Padé coefficients 4,, B; will depend on z.

By computing these coefficients for several values
of z, it is possible to draw the temperature profiles for
each value of m,.

In Figs. 7-9, the Padé representation of the profiles
of 3and 8, for Pr = 0.7 and M =~ 0 are plotted against

BN
- ) \\ \' ,/
Lol N
¢} 05 1.0

8

F1G. 7. Profiles of 9 and 9, vs z for m; = 1 obtained from the

Padé summation (——), the two-term asymptotic expansion

(————) and the three-term asymptotic expansion (-—-—)
(Pr=0.7and M ~ 0).
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(¢} 0.5 1.0

FiG. 8. Profiles of § and 3. vs = for m; = 1.41 obtained

from the Padé summation (——), the two-term asymptotic

expansion (————) and the three-term asymptotic expan-
sion (—-—) (Pr = 0.7 and M ~ ().

zform, = 1, 1.4] and 4, together with those obtained
from the two-term asymptotic expansion, equation
(13), and from equation (22) by calculating C() at
m = 0.33.

These figures show that at small values of m,, the
asymptotic solution is not accurate when represented
by means of two terms of equation (13), but that it
improves appreciably when the first eigensolution is
added. Moreover, the profiles obtained by the Padé
representation are very close to the correct asymptotic
ones (they practically coincide for m, > 4), and hence
the Padé representation is valid in the entire field.

In order to determine the velocity profiles, the cor-
respondence between the variables (m;, z) and (x, y)
must be obtained.

From the definitions of m, = 1/m and z given by
equations (12) and (6"), respectively, one has

8; (%
—0.020 —0.010 (o]
8 T T T T T T
- "
Zz 3[
41 1 TN S TS S |
o] 0.5 |
6

F1G. 9. Profiles of $ and 3, vs z for m, = 4 obtained from the

Padé summation (——), the two-term asymptotic expansion

(———-) and the three-term asymptotic expansion (—-—)
(Pr=0.7and M ~ 0).
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o] 0.5 1.0

FiG. 10. Velocity profiles vs y/x2 for Pr=10.7, M = 3 and
At,, = 0.2556 compared with that obtained for Pr = 0.7 and
M =~ 0 (dashed curve).

yix"? =z4+At, Y mh f hi(z)dz.
i 0

Equations (6) then give the velocity profiles. In Fig.
10, the u# component for m, = 0.1 and 5, together
with the incompressible one (dashed curve), is plotted
against y/x/?

The transverse velocity may be obtained from equa-
tion (6'), where 7, is given by

"x(mlaz) =

R @+ 1)m ( hi(z) dz—zEm h,(2)

_g-ue Aty v

2 1+At Zm h(2)

In Fie. 11 An/V = (v—W/V for v — o0, given bv
inrig. i, Av/ v w—r)viory oo, given by
AV [Vy = Aty (i+1)minj h(z)dz/(zZ"—Z)

i 0

is plotted for M = 1.34, 2 and 3 against m,.

7. CONCLUDING REMARKS

In this paper an accurate solution of the coupled
forced convection—conduction problem for a flat plate
has been given.

This result was obtained starting from two expan-
sions for the temperature, holding for small and high
values of the abscissa, and after using the Padé
approximant technique.

The initial solution is valid when the abscissa
falls in the range 0-L,, where L, = (m{p)2b, and
the asymptotic one is valid when the abscissa is
greater than L,,, where L,, = (s1,p)%h. For Pr = 0.7,
m} = 0.5 and 1, = 4, and for Pr=7.02, m} =09

HMT 32:7-B
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FiG. 11. The influence on Av,/V,, of M for Pr=0.7 and
Aty = 02556 —, M=3;, ——, M=2;, ————,
M=134.

and 71, = 8. The values of interest in practical appli-
cations of the coupling parameter p are in the range
10~%102

A comparison of the Padé representation with the
MacLaurin initial solution, holding for small values of
the abscissa, and with the asymptotic solution, hold-
ing for high values of the abscissa, showed that this
representation is valid in the entire field.

Once the temperature distribution was known it
was possible to determine the velocity profiles by
means of the Stewartson—Dorodnitzin transform-
ation.

The present solution was compared with those in
the literature, and the influence of the Mach number
on the interface temperature, the Nusselt number and
the velocity field was demonstrated.
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COUPLAGE DE LA CONDUCTION AVEC LA CONVECTION FORCEE SUR UNE
PLAQUE PLANE

Résumé—Le champ thermo-fluido-dynamique qui résulte du couplage de la convection laminaire forcée

le long d’une plaque plane chauffée et de la conduction & 'intérieur est étudié i 'aide de deux dével-

oppements. Le premier est un développement en série réguliére qui décrit le champ dans la région du bord

d’attaque de la plaque. Le second qui est asymptotique inclut les fonctions propres. Au moyen de la

technique de Padé il est possible d’étendre la validité du premier développement sur son domaine de
convergence et d’obtenir la description du champ complet.

KOPPLUNG VON WARMELEITUNG MIT ERZWUNGENER KONVEKTION UBER
EINER EBENEN PLATTE

Zusammenfassung—In dieser Arbeit wird das thermo-fluid-dynamische Feld, das aus der Kopplung von

laminerer erzwungener Konvektion an und von Wirmeleitung in einer beheizten ebenen Platte resultiert,

mit Hilfe zweier Entwicklungen untersucht. Die erste, die das Feld an der Anstrémkante der ebenen

Platte beschreibt, ist eine regelmédBige Reihe. Die zweite Entwicklung beinhaltet Eigenlosungen und ist

asymptotisch. Weiterhin ist es mit Hilfe der Naherungsmethode nach Padé mdglich, die Giiltigkeit der

ersten Entwicklung iiber ihren Konvergenzbereich hinaus zu erweitern und so die Beschreibung des
gesamten Feldes zu erhalten.

COMPSAXEHUE TEIUIONPOBOHOCTH C BLIHYXJIEHHOW KOHBEKIUWEN HAQ
MJIOCKOY NMNACTHHON

Amoramms—MeToA0M ABYX Pa3lJIOXEHHH HCCASOYETCH TEPMOTHAPOAHHAMHYECKOE MOJIE, BOIHHKAIOIIEE

TIPH COMPAXKCHUH JaMHHAPHOH BBIHYAKICHHO# KOHBEKI[HM BIOJIb HAarpeToi IUIOCKON TUIACTHHBI C Ten-

JIONPOBOAHOCTBIO BHYTDH IUIacTHHEL IlepBoe pasiokeHye, onMchBaloliee noje B o6nacTd nepenned

KPOMKH IUIACTHHBI, NpeAcTaBiisieT coboif oOmuHbl pan. Bropoe, sBisIOLleecs ACHMIOTOTHYECKHM,

BKINIO4aEeT COGCTBEHHBIE penieHRs. KpoMe Toro, ¢ nomMomnsio TexHakH [lafie-annpokcaMaiMu yAanoch

PAcnpOCTPaHUTh MPHMEHHMOCTh NIEPBOro Pa3fOXEHHs 32 HPefesbl O0JIACTH €ro CXOAAMOCTH M TAKAM
06pa3oM NOJYIHTH ONHCAHAE BCETO MOJIA.



