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Abstract-In this paper, the thermo-fluid-dynamic field resulting from the coupling of laminar forced 
convection along and conduction inside a heated flat plate is studied by means of two expansions. The first 
one, describing the field in the leading edge region of the flat plate, is a regular series. The second expansion, 
which is asymptotic, includes eigensolutions. Moreover, by means of the Padi: approximant technique, it 
is possible to extend the validity of the first expansion over its range of convergence and hence to obtain 

the description of the entire field. 

I. INTRODUCTION 

THE REFERENCE work for the conjugated problem of 
laminar forced convection along a flat plate is due to 
Luikov et ul. [I]. In that paper, the coupled con- 
duction problem in a flat plate of finite thickness b 
and the convection problem for the fluid were con- 
sidered. The authors solved the problem by means of 
the generalized Fourier sine transformation and an 
expansion in series in terms of the Fourier variable. 
The results of such an analysis were presented in two 
figures for two examples. This solution cannot be 
easily used ; and Luikov [2] has given an approximate 
solution of the problem assuming a linear temperature 
distribution in the plate. 

An extension of these results was obtained by 
Payvar i3] for high Prandti mum’bers. An improv~en1 
of the Payvar analysis was studied by Karvinen 141, 
who also presented in ref. [5] an iterative technique 
for solving the conjugated heat transfer problem in a 
ffat plate in the presence of internal heat sources. 
Gosse [6] presented an analytic solution which held 
at high values of the abscissa x. A review of conjugated 
problems for geometries different from the flat plate 
. . . ..n -U.-,,..*,.-l a... p_,.,: r-l, was Plci3GlllGu “J ““11 L ‘J. 

The purpose of this paper is to describe the entire 
thermo-fluid-dynamic field by means of two expan- 
sions in terms of the coupling parameter : the tit one 
is an initial solution, which holds when the abscissa 
falls in the range &Li,, and the second one is an 
asymptotic solution which holds when the abscissa is 
greater than L,,. The two lengths Li, and La, depend 
on the coupling parameter and the Prandtl number. 

By means of the Pad& approximant technique, it is 
possible to match very well these two expansions and 
to obtain an accurate description of the fieid. 

2. EQUATIONS AND BOUNDARY 

CONDITIONS 

In order to describe the steady two-dimensional 
forced flow on one side of a flat pIate of thickness b, 

.nsulated on the edge, and with a temperature Ti, 
maintained on the other side (Fig. I), one must solve 
be coupled thermal fields in the solid and in the fluid. 
The coupling conditions require that the tem~rature 
md the heat flux be continuous at the interface. 

Neglecting the wall axial conduction, the tem- 
Frature T&x, u) in the solid is given by 

T,,(x, v) = T, - (T, - T&/b (1) 

*here T, = T(x, 0) is the (~~0~) tem~rature at 
:he interface. 

The thermo-fluid-dynamic field in the fluid is 
governed by the boundary layer equations, which in 
Ion-dimensional form for a compressible flow may 
3e written as 

(pujX + [puj, = ii Qaj 

PWX+~r$) = W,), VW 

p(urx+ot,) = ~(“‘*)Y+(Y-l)Mzrll: (2c) 

where Pr and M are respectively the Prandtl and Mach 
lumbers of the external flow, and t = T/T,. 

We take as reference lengths the wall thicknesses h 

FIG. 1. Thermal model of a flat plate. 
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NOMENCLATURE 

Pr(y - l)M’/At, 
coefficients of Pade summation, 

equation (17) 
plate thickness 
constant of the first eigensolution $ 
coefficients of the expansion in 
MacLaurin series of 9, equation (14) 
vaiue of the abscissa where the 
asymptotic solution begins 
length of the region in which the initial 
solution is valid 
Mach number 

P/r ‘j2 
l,/Vl 
upper bound of the range of validity of 
the initial solution 
lower bound of the range of validity of 
the asymptotic solution 
value of m where the initial condition for 
the asymptotic solution is given 
local Nusselt number, 

-~ll.o/[Tw(x) - Tml 
coupling parameter, i, Re”‘/& 
Prandtl number 
Reynolds number, u,b/v, 
Reynolds number, u,x/v, 
dimensionless temperature, T/T, 

(Tb- TJTs 
temperature 
temperature at the outside surface of the 
plate 

fluid axial velocity 
fluid normal velocity 
V-V 

pt’+ f4.v 
dimensionless axial coordinate 
dimensionless normal coordinate 
s,< 1!2 

Blasius solution. 

Greek symbols 
first eigenvalue of equation (IQ) 
ratio of specific heats 
dimensionless temperature, 

(T- T,)I(T,-- T,) 
coefficients of the asymptotic expansion 
of 9, equation (13) 

j3pdy 
function defined in equation (22) 
ffuid and solid therma conductivities 
fluid viscosity 
kinematic viscosity of the fluid 

density of fluid 
eigensolution of equation (23). 

Subscripts 
W wall-fluid interface 
co mainstream Bow. 

and bRe “2 along the X- and y-directions, respec- 
tively, where Re = u,b/v,. 

The heat flux continuity condition may be written 
as 

iiRe” t,(x,O) = &[tw-tJ (3) 

where the thermal conductivities depend in general on 
the temperature. 

The boundary conditions which, together with 
equation (3), must be associated with the system of 
equations (2a)-(2c) are 

U(X, 0) = u(x, 0) = 0 ; u(x. 00) = 1 (4) 

t(0, y) = t(x, 00) = 1. (5) 

By assuming that p and ,% vary linearly with temper- 
ature and that cr is a constant. the boundary layer 
equations reduce to the incompressible form by apply- 
ing the Stewartson-Dorodnitzin transformation. In 
this way, equations (2a) and (2b) are independent of 
equation (2~) and their solution is 

u=Z’; v = (zz’-z)/2{“2 

where Z(z) is the Blasius solution and 

(6) 

X.Y +n-m ,C the. ..or;.shlm ,= %+,A rl tha P,,P..RI, an,tn_ 111 LcIIIIa “t IfLU “ULLUVICU 5 UI‘U ‘,, uir .AYL~J “y”Y- 

tion (2~) may be written as 

Pr (~9~ f V9,) = 9,, + au,’ (7) 

where 9 = (T-T,)/(T,--T,), At, = (T,-T,)/T, 
and a = Pr(y- 1)M2/Arm, and u and V are given by 
equations (6). 

The coupling condition (3) assumes the form 

pQ,(<,O) = 9, - 1 (8) 

where 9, = 9({, 0), the coupling parameter p = 
1, Re”‘/&, and the thermal boundary conditions (5) 
become 

9(0, ?) = 0 (94 

9(&m) = 0. (Qb) 

3. SOLUTION METHOD 

In terms of the variables f and z, equations (7) and 
(8) may be written as 
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(2tZ’9, - Z9,) Pr = 29,, + 2aZ” (10) 

m8,({, 0) = 9, - 1 (11) 

where 

m = p/[“‘. (12) 

The variable m defined by equation (12) is related to 
the local Brun number [2] for a flat plate in the follow- 
ing way : Br, = m Pr”(n = 1/2if Pr < 0.5 andn = l/3 
if Pr L 0.5). Physically, the local Brun number is pro- 
portional to the ratio of the thermal resistances of the 
wall and boundary layer over the length X. 

The boundary condition (11) suggests a change in 
variables from 5 and z to m and z. If one expands the 
function 9 in a MacLaurin series with respect to m 
(m -+ 0 corresponds to x -) co), thus writing 

co 
9 = C m’&(z) 

i=O 

one finds that this form of the solution is not satis- 
factory everywhere because m diverges for vanishing 
5. Hence this expansion does not hold at c = 0, and 
the initial condition (9a) cannot be satisfied. 

Moreover, the linearized problem presents eigen- 
values : this circumstance, although it does not permit 
us to utilize an expansion in terms of m of the form 
of equation (13)) does enable us to solve the problem 
of the initial conditions. It is necessary to modify 
this form and to give the boundary condition at 
ril (Cl = pJ{y, where co is a suitable positive value of 
g) according to boundary condition (9a). 

To obtain this new initial condition, a different 
1 __.__.._~__ \ -._I:> p-- -_--11 __-,__-- -e expansion pmdl expanslonl vdua ror small values or 

5 will be considered. The function 9 is now expanded 
in a MacLaurin series with respect to m, = l/m, thus 
writing 

9 = f m’,h&). (14) 
i=O 

In this way, if one assumes that /Z,(W) = 0: initial 
condition (9a) is satisfied as well. Moreover, if ti is a 
point of convergence of expansion (14), it is possible 
to obtain in this point the initial condition for a correct 
expansion in terms of m (asymptotic expansion). 

4. EXPANSION FOR SMALL { 

(INITIAL EXPANSION) 

By substituting expansion (14) into equations (10) 
and (11) one finds the following leading-order equa- 
tion and boundary conditions : 

K~+PrZKo/2+aZ”2 = 0 

&(O) = 0; h,(co) = 0 

and the following for the ith order : 

(15) 

2h; - Pr (Z’ihi -Z/I,!) = 0 

hj(0) = h,_,(O)-6,, ; hi(cil) = 0 (16) 

where6,,=1and&,=Ofori>l. 
Fnr1atinn. IlCj 2nd Ilfil WWWV.c*nt 1 ftonf-llrf-l Y~......V..Y \.d, .._A.. \a”, ‘WY’!&“““. . “.Ull..Yl.. 

boundary-value problem which can be easily solved 
numerically. It is possible to use the results obtained 
from series (14) for obtaining, by means of the Pad6 
approximant technique, a new and powerful expan- 
sion. 

The idea of the Pad6 summation is to replace a 
power series x a/ by a sequence of rational functions 
of the form 

(17) 
II=0 I n=O 

where B, may be set equal to 1 without loss of gener- 
ality. The remaining M+N+ 1 coefficients A,, B,, may 
be chosen so that the 6rst M+N+ 1 terms in the 
Taylor series expansion of P%(t) match the first 
M+N+ 1 terms of the power series xz o ant”. The 
resulting rational function P%(t) is called a Pad& 
approximant and the special sequence for which 
M = N is called the diagonal sequence. 

In this way it is possible to obtain a rapid con- 
vergence by using only a few terms of the original 
Taylor series, but above all the utility of Padt approxi- 
mants lies in the fact that they also work well when 
the Taylor series does not converge. 

The remarkable improvement with respect to the 
MacLaurin expansion obtained with Pad& approxi- 
mants will be shown in the following sections. 

The solution of the initial problem makes it possible 
tn n&e th.= h\n,,nAQmr ~nnA;+;nn o+ m _ .G f-v thp L” P.W CAIV ““U~~UCU, ““llUlU”U _L II‘ - 111 I”, Cl‘r 
asymptotic expansion. 

5. EXPANSION FOR c: HIGH 

(ASYMPTOTIC EXPANSION) 

The solution for m < 61 assumes a form different 
from that expressed by expansion (13). 

in fact, if one substitutes this expansion into equa- 
tions (10) and (1 l), one finds the following first-order 
equation and boundary conditions : 

29’A+PrZ96+2aZ”2 = 0 

9o(o) = 1; So(co) = 0 (18) 

and the following for the ith order : 

29~+Pr(Z’iS,+Zt?~) = 0 (19) 

l&(O) = 9:_ l(O) ; Q,(a) = 0. (20) 

Equation (19) presents eigensolutions when associ- 
ated with the boundary conditions &(O) = 0,( co) = 0. 

The first one appears for 1 < B1 = i < 2, and 
depends on Pr. For instance, 8, 2~ 1.60 for Pr = 0.70 
and PI N 1.51 for Pr = 7.02. 

The first two terms in expansion (13) may then he 
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determined by means of equations (18)-(20), and the 
solution may be written in the form 

I 

where the function R(m, z) is not analytic with respect 
to m. R may be represented by a suitable expansion. 
To estimate the leading term of such an expansion, 
say 0 ,(z), we write equation (21) as follows : 

9 = 2 m’9i(z)+m~~0,(z)+o(m~~) (22) 
I=” 

where o(m81) denotes terms of order smaller than 
Fnfll. 

We now put O,(z) = C@)$(z), where tj(z) is the 
eigensolution of the equation 

2$“+Pr(Z’P,II/+ZlJ’) = 0 (23) 

[t&O) = $(co) = 0] that satisfies the initial condition 
$‘(O) = 1, whereas C(m) depends on the value of 
m = Hit, where the initial condition for the asymptotic 
solution is given. 

In order to calculate C(m), we consider the function 

s 

7 
F(m) = u9 dz. 

0 

C must be such that the values obtained for such a 
function at m = 61 by means of the two repre- 
sentations (14) and (22) of 9 are equal. 

6. RESULTS AND DISCUSSION 

The initial solution, holding for small values of 
m, = x”‘]p and described by equation (14}, has been 
found with 21 terms of the expansion, using a fourth- 
order predictor-corrector method. In Table 1. the 

Table 1. Coefficients h,(O) of expansion (14) (initial solution) 

Pr = 0.7, Pr = 0.7. Pr = 7.02. 
i M=O M=3 M=O 

0 0 5.8853303 0 

1 2.4636984 - 12.035983 1.1280761 

2 -5.1291153 25.057417 - 1.0799054 

3 9.5413968 -46.612845 9.2572774E-1 

4 - 16.313412 79.696306 -7.3030601E-1 

5 26.073775 - 127.3783 5.3904464E-1 

6 - 39.399996 192.48139 -3,7639352E-1 

7 56.144421 -277.21406 25060616E-1 

8 - 18.362526 382.82461 - 1.6004882E-1 
9 104.25337 - 509.30837 9.8498975E-2 

10 -134.12117 655.22015 -58632192E-2 

11 167.36393 -817.61883 3.3859516E-2 

12 -203.09191 992.15765 - 1.9017861E-2 

13 240.17414 -1173.3142 l.O411339E-2 

14 -271.31236 1354.7373 - 55655834E-3 

15 313.12236 - 1529.6733 2.9098012E-3 

16 -346.23453 1691.4286 - 1.489936OE-3 

17 375.38318 - 1833.8199 7.4809335E-4 

18 - 399.48843 1951.5720 - 3.6872367E-4 

19 417.71981 - 2040.628 1 1.7857745E4 

20 -429.53754 2098.3516 - 8.5057695E-5 

z-6.00 

ew 

- 3.50 
_-.-- 

--- 

I .oo 
0 I 2 3 4 5 

(0) 

FIG. 2. The interface temperature represented by the initial 
solution (---) and by Padi: summation (-.-) for 
Pr = 7.02 and M z 0 (lower curves), Pr = 0.7 and MY 0 

(middle curves), Pr = 0.7 and M = 3 (upper curves). 

values of hi(O), giving the interface temperature 9, 
for Pr = 0.7 (air), for MN 0 and n/i = 3, and for 
Pr = 7.02 (water), for M N 0, have been listed. 

By means of these coefficients ,it was possible to 
determine the Pad& approximants, given by equation 
(17) with M = N, for several values of N. No signifi- 
cant difference was noted between the results obtained 
for N = 10 and those for N > 10. 

In Fig. 2 the interface temperature 9, represented 
by the initial solution (14) and the PadC approximants 
(17) plotted against m , is drawn for Pr = 0.7 and 
MN 0, for Pr = 7.02 and MN 0 and for Pr = 0.7 

and M = 3 (* curves). This figure shows that for 
m, <m: (where m: z 0.5 for Pr = 0.7 and MN 0, 
m: N 0.9 for Pr = 7.02 and MN 0 and m: N 0.5 for 
Pr = 0.7 and M = 3), the two representations give 
very similar results, while for m , > m: , the results are 
completely different. If we denote by L,, the length 
of the strip in which the initial solution holds, 
L,, = (m:p)‘b. We shall show later that, by com- 
parison with the asymptotic values, the PadC curve 
converges to the exact one. 

Let us consider now the asymptotic solution (22) 
represented in terms of the variable m = p/x*‘*. The 
values of 9’,(O) and 9’,(O) for Pr = 0.7 (MN 0 
and M = 3) and for Pr = 7.02 (M N 0) are given in 
Table 2. 

These coefficients enable us to obtain the asymp- 
totic solution, neglecting terms of order mBI ; an 
improvement in these results may be obtained by 

Table 2. Coefficients 9:(O) of asymptotic expansion (22) 

Pr = 0.7, Pr = 0.7, M = 3, Pr = 7.02, 
i M-O At, = 0.2556 M-0 

0 - 0.292680 1.429840 -0.646542 
1 ’ 0 0 0 

-. 
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Table 3. Comparison of the Pad6 summation, the asymptotic 
solution with two terms and the asymptotic solution with 

three terms 

Asymptotic solution 
tlun +pnnp thrw +c=nna . . . . ..,&...” ..y”l ._....” 

0.5 -0.2088 
1.0 -0.2530 
1.5 -0.2692 
2.0 - 0.2769 
3.0 - 0.2839 
4.0 -0.2870 
6.0 -0.2897 
8.0 -0.2909 

10.0 -0.2915 

- 0.2927 -0.1653 
- 0.2927 -0.2507 
-0.2927 -0.2707 
-0.2927 -0.2788 
-0.2927 -0.2854 
- 0.2927 -0.2881 
-0.2927 -0.2903 
-0.2927 -0.2912 
-0.2927 -0.2916 

adding the first eigensolution, as estimated at the end 
of Section 5. 

Table 3 compares the values of 9&n,, 0) obtained 
by means of the Pad& summation (17), the asymptotic 
solution (22), neglecting terms of order &I, and the 
asymptotic solution, neglecting terms smaller than 
rnfl1 (constant C has been evaluated at fi = 0.33) for 
Pr=0.7andM-0. 

In Fig. 3, the interface temperature 9, represented 
by the Pade summation and by the asymptotic sol- 
ution with two terms is plotted against m , for Pr = 0.7 
andMzO,forPr=7.02andMzOandforPr=0.7 
and A4 = 3. Table 3 and Fig. 3 show that for m, 2 8 
the values given by the Pade representation practically 
coincide with those given by the asymptotic solution. 
Therefore, while the MacLaurin initial expansion 
holds for 0 < m 1 < rn: the Pad& representation holds 
in the entire field. 

lX”..m A nrrmrorno ,hP ;,.+mrFnnm l n......%ro*r.m a I-lgjulr T U”Uq.%alW LUG Illlrllam WUqJUaru,r VW 
obtained from the present solution (solid curves) with 
that of ref. [l]. These solutions refer to different situ- 
ations : the present one may be considered exact, start- 
ing from assumption (l), while the Luikov solution, 
obtained without assumption (l), is based on an 

I.001 ~6.00 

e,c*) 

3.50 

0 3 6 9 I2 
1.00 

15 

FIG. 3. The interface temperature in the asymptotic 
(----) and Pad& representation (-) (for Pr = 0.7 
and MN 0 (upper curves), Pr = 7.02 ana M z 0 (middle 

curves), Pr = 0.7 and M = 3 (lower curves). 

0.60 

I-ew 

0.40 

P'l.276 

0 20 40 60 60 100 
X 

FIG. 4. Comparison between the present results (-) and 
the Luikov [l] results (----). 

expansion in series the accuracy of which is not dis- 
cussed. 

In Fig. 5, the iniIuence of the Mach number on the 
interface temperature and on the Nusselt number is 
shown, subject to the hypothesis of no interference 
between the shock wave and the boundary layer. 

The local Nusselt number Nu, is defined as 
Nu, = -xT,,,/[T,(x)-T-1. In Fig. 6, the value of 
Nu, obtained from the present solution (solid curves) 
is compared, for several Prandtl numbers, with that 
obtained from the first-order asymptotic solution of 
ref. [6] (dashed curves), in which the expression pre- 
sented for 0.6 < Pr < 15 is 

Nu, 0.332PrL1’m, -- 
Re’l’ - m, -0.332Pr’l” x 

This figure shows that for m, > 51,) the solution 
of ref. [6] is accurate (for Pr = 0.7, fir = 4 ; for 
Pr = 2, Gil = 6; for Pr = 7.02, 5, = 8), and for 
ml + oc), the curves of Nu, tend to values which 

6 0 

ew 
Nuw ( l ) 

R.2 

FIG. 5. The influence on the interface temperature and on the 
Nusselt number of M for Pr = 0.7 and At, = 0.2556 : -, 

M=3;-.--,M=2;-----,M=1.34. 
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0 - 2 6 IO 

FIG. 6. Comparison between the present results (+-), the 
Gosse [6] results (----) and the approximate expression 

(---). 

are well described by the approximate expression 
Nu = 0.332Rei” Pr’j3 holding in the isothermal case 
(dazhed lines). Thus the asymptotic solution is valid 
for values of the abscissa greater than L,,, where 
L,, = (rn $Q2b. 

z for m, = 1, 1.41 and 4, together with those obtained 
from the two-term asymptotic expansion, equation 
(13), and from equation (22) by calculating C(e) at 
?il = 0.33. 

Pad& approximant technique may also be used for 
determining the temperature and velocity profiles. 

In fact, if we put 

ycm’,W) = $O&n\/iOB,mil 

then the Pade coefficients A,, Bi will depend on z. 
By computing these coefficients for several values 

ofz, it is possibie to draw the temperature profiles for 
each value of m, . 

These figures show that at small values of m,, the 
asymptotic solution is not accurate when represented 
by means of two terms of equation (13) but that it 
improves appreciably when the first eigensolution is 
added. Moreover, the profiles obtained by the Pad6 
representation are very close to the correct asymptotic 
ones (they practically coincide for WI, > 4), and hence 

the Pad& representation is valid in the entire field. 
In order to determine the velocity profiles, the cor- 

respondence between the variabies (m,, zj and (x, yj 
must be obtained. 

In Figs. 7-9, the Padt representation of the profiles From the definitions of m, = l/m and z given by 
of 9 and 0, for Pr = 0.7 and M = 0 are plotted against equations (12) and (6’), respectively, one has 

0 0.6 1.0 

8 8 

FIG. 7. Profiles of 9 and 9, vs .z form, = 1 obtained from the FIG. 9. Profiles of 9 and 9, vs z for m, = 4 obtained from the 

Pad& summation (-), the two-term asymptotic expansion Pad& summation (-), the two-term asymptotic expansion 

(----) and the three-term asymptotic expansion (-.--) (----) and the three-term asymptotic expansion (-.-) 

(Pr = 0.7 and A4 u 0). (Pr = 0.7 and M = 0). 

0 0.5 1.0 

8 

FIG. 8. Profiles of 9 and 9, vs r for nl, = 1.41 obtained 
from the Padt summation (--). the two-term asymptotic 
expansion (----) and the three-term asymptotic expan- 

sion (-.-) (Pr = 0.7 and M _u 0). 

82 !*! 
-0.020 -0.010 
61 , , I , , , I I I / 
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Y 
-6” x L 

6 

0 0.6 1.0 
0 2.5 6.0 

ml 

FIG. 10. Velocity protiles vs y/x’/’ for Pr = 0.7, A4 = 3 and FIG. 11. The intluence on Ao,/V, of M for Pr = 0.7 and 
Al, = 0.2556 compared with that obtained for Pr = 0.7 and At, = 0.2556: -, M= 3; -.-, M= 2; ----, 

M u 0 (dashed curve). M = 1.34. 

I 

rlx ‘1’ = z+At, Cm’, 
i I h 1 (z) dz. 

0 

Equations (6) then give the velocity profiles. In Fig. 
10, the u component for ml = 0.1 and 5, together 
with the incompressible one (dashed curve), is plotted 
against y/x”’ 

The transverse velocity may be obtained from equa- 
tion (6’), where Q is given by 

_r-1,2A+ 
Z(i+ l)m: r h,(z) dz-zZm’lh,(z) 

de 

1 +At,Zm’,h,(z) * 

The present solution was compared with those in 
the literature, and the influence of the Mach number 
on the interface temperature, the Nusselt number and 
the velnritv field was dem_on&rated. ____ . ------, * __-_ 

I I 
co 

AV,/V, = At, c (i+ l)m’, h,(z) WzZ’-Z), 
0 
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is plotted for M = 1.34, 2 and 3 against m,, REFERENCES 

7. CONCLUDING REMARKS 

In this paper an accurate solution of the coupled 
forced convection-conduction problem for a flat plate 
has been given. 

This result was obtained starting from two expan- 
sions for the temperature, holding for small and high 
values of the abscissa, and after using the Pade 
approximant technique. 

The initial solution is valid when the abscissa 
falls in the range &Lb, where Li, = (m:p)‘b, and 
the asymptotic one is valid when the abscissa is 
greater than L,, where L,, = (ti,p)‘b. For Pr = 0.7, 
rn: = 0.5 and fi, = 4, and for Pr = 7.02, rn: = 0.9 

AC 
I/, 

1.1 

and ri?, = 8. The values of interest in practical appli- 
cations of the coupling parameter p are in the range 
10-2-102. 

A comparison of the Pade representation with the 
MacLaurin initial solution, holding for small values of 
the abscissa, and with the asymptotic solution, hold- 
ing for high values of the abscissa, showed that this 
representation is valid in the entire field. 

Once the temperature distribution was known it 
was possible to determine the velocity profiles by 
means of the Stewartson-Dorodnitzin transform- 
ation. 
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COUPLAGE DE LA CONDUCTION AVEC LA CONVECTION FORCEE SUR UNE 
PLAQUE PLANE 

R&aan&Le champ thermo-fluido-dynamique qui resulte du couplage de la convection laminaire for&e 
le long dune plaque plane chauffee et de la conduction a l’interieur est BtudiC a l’aide de deux devel- 
oppements. Le premier est un dtveloppement en sirie reguliire qui decrit le champ dans la region du bord 
d’attaque de la plaque. Le second qui est asymptotique inclut les fonctions propres. Au moyen de la 
technique de Pad6 il est possible d’etendre la validite du premier dheloppement sur son domaine de 

convergence et d’obtenir la description du champ complet. 

KOPPLUNG VON WARMELEITUNG MIT ERZWUNGENER KONVEKTION UBER 
EINER EBENEN PLATTE 

Znaammenfaaaung-In dieser Arbeit wird das thermo-fluid-dynamische Feld, das aus der Kopplung von 
larninerer erzwungener Konvektion an und von Wiirmeleitung in einer beheizten ebenen Platte resultiert, 
mit Hilfe zweier Entwicklungen untersucht. Die erste, die das Feld an der Anstriimkante der ebenen 
Platte beschreibt, ist eine regelmll3ige Reihe. Die zweite Entwicklung beinhaltet Eigenlijsungen und ist 
asymptotisch. Weiterhin ist es mit Hilfe der Naherungsmethode nach Pad6 moglich, die Giiltigkeit der 
ersten Entwicklung iiber ihren Konvergenzbereich hinaus zu erweitern und so die Beschreibung des 

gesamten Feldes zu erhalten. 

COIIPIIXEHHE TEHJIOl-IPOBO~OCTH C BMHYX~HHOH KOHBEKHHEH HAA 
HJIOCKOH IIJIACTMHOH 

Asmo~MeTonoM nsyx paznonreuti tic4urenyercn rephtornnpomma~9ecroe none, n03mircaromee 
npn corrpffxemie nabfmraprioil ebniynneHHol KOHBe1(4HW eaonb tiarperoii rurocroP nnacrrinbr c ren- 
JIOnpOBOmOCTbm BHyTpa MaCTHHbl. l%pBOe pWIoxeHHe, on~cbmw~ee none B o6nacm nepemefi 

K~OMKH IIJI~CTHHL~, npencrannaer co6oioi O~WIHJ& pan. BTO~X, mmomeec~ ~~~~ITOTWECKHM, 

BKmO98eT co6cTBeHabte peILIeIim KpoMe TOTO, C noMoIubIo TeXHHKH Lyle-annpoKcxiMauqEsi yz&wmcb 
pacnpocrparinrb npnbtemfMocrb nepnoro pa3noacemia 38 npenenw o6nacTu ero cxomi~ocra H TaKHM 

06pa3ot.1 nonyqm onHcaHHe acero nonn. 


